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1. Introduction

Tb_is report considers the effects of additional interference signals on the perfor-

mance of a fully adaptive array. Specifically, we consider a steered-beam adaptive

array which is used in the case of known direction of arrival for the desired signal.

We refer to the case when the number of interference signals exceeds the number of

degrees of freedom in the array as the case of "additional interfering signals," where

additional means more than the number of degrees of freedom in the array.

This research is motivated by a problem of suppressing weak interference signals

by an adaptive array. This problem arises in satellite communications, where inter-

ference is caused by transmissions from satellites adjacent to the desired satellite

in geostationary orbit [1,2]. These interference signals enter the system through

sidelobes in the receive antenna. The interference level is often low; however, be-

cause of their similarity to the desired signal these interference signals are coherent

to the desired signal, and even small interference signals are objectionable. This

interference manifests itself as "ghosts" in a television picture, for example. It is of

interest to suppress these weak interference signals by use of an adaptive array.

The suppression of weak interference by an adaptive array has been studied in

[1,3,2,4,5]. It has been shown both theoretically and experimentally that effective

interference suppression can be achieved by appropriately modifying the weight

vector determination algorithm. In this work, we extend those results by considering

the effect of additional interference signals on adaptive arrays of this type. While

the results presented here are focused on the weak interference suppression problem,

they apply to strong interference signals as well.



The performance of adaptive arrays is well-understood when the number of

interference signals is less than the number of array elements [6,7,8,9]. However,

less is known when the number of interference signals exceeds the number of degrees

of freedom in the array. Fujita [10] has studied the array pattern and SNR for a

2-element array with one desired and two interference signals. The behavior of the

weights for a similar 2-element example is considered in [9, pp. 84-93].

In this report, we analyze the steady state the performance of the adaptive array

in the additional interfering signal case. We first outline the signal environment

assumed for this study, and we introduce the steady state weight vectors that are

used. We then show analytically that no "simple" change in the weight update

algorithm (such as modifying eigenvectors or subtracting known quantities from

the covariance matrix) will result in improved array performance as measured by

the INR at the array output. This means that performance improvement must be

obtained by hardware changes in the array, such as an increase in the directivity of

the auxiliary antennas.

We then study the effect of additional interference signals on the performance

of the array as a function of antenna directivity. We show that if the auxiliary an-

tennas are sufficiently directive, the array performance in the presence of additional

interference signals approach the performance of the system when no additional

interference signals are present. The tradeoff between antenna directivity and array

performance is analyzed quantitatively.

An outline of this report is as follows. Section II introduces the adaptive array,

and outlines the equations which describe the performance of the array. Section III

analyzes a simple scenario, and demonstrates that no simple changes to the weight
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w

update algorithm will effectively reduce the performance degradation which results

from additional interference signals. Section IV shows quantitatively how direc-

tivity of the auxiliary antennas can improve array performance in the additional

interference case. Finally, Section V presents the conclusions.

w

2. The Adaptive Array System

We consider an N-element linear array of equally spaced antennas as shown in

Figure 2.1. The array is fully adaptive, so each antenna signal is multiplied by a

weight; these weighted signals are then summed to form the array output.

2.1 The Signal Environment

Each element in the adaptive array receives a desired signal, a number of inter-

ference signals, and noise. The noise present at each element output is zero-mean

complex Gaussian white noise with power a 2. We assume the signals are of suf-

ficiently narrow bandwidth to be well approximated as a single frequency signal.

Each signal component is incident on the array at an angle _, from broadside; this

results in an inter-element phase shift ¢, of the signal, where

¢, = 2_D sin(6,)/_, (2.1)

D is the inter-element spacing, and )_ is the wavelength corresponding to the center

frequency of each signal. The subscript x can either be D to denote the desired

signal, or an Ik, where k = 1,2,...,M to denote the kth interference signal. If

3
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we assume that the zero phase reference is at the first antenna element, then the

element signals are given by

M

Xn(t) "-- aDne j[wt+(n-1)@D+¢D] -_ E aIk,_e_'[_t+(n-1)@'k+C'k] + the(t) (2.2)
k=l

for n = 1, 2,..., N. Here, aDn denotes the amplitude of the desired signal at the

nth antenna element, and axk,_ denotes the amplitude of the kth interference signal

at the nth antenna element; this amplitude is a combination of the signal amplitude

and the antenna gain in that signal direction. The parameter w is the frequency

of the signals. The ¢_ quantities are unknown initial phases associated with the

desired and interference signals.

Using vector notation, the array output can be expressed as a vector

_l(t)

z_(t)

where

x(t) =

_N(t)

= xv(t) + x.,(t) + x.(t) (2.3)

Xv(t) = ADUDexp[j(wt + ¢_)],

Xik(t) = AlkUIkexp[j(wt + ¢Ik)],

x°(t) = [,l(t) ,N(t)]

(2.4)

(2.5)

T

, (2.6)

At_

axl 0

ax2

0 axN

5
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[ ]TUx = I e-J'_ .... e-i(g-1)_, (2.8)

where x = D or Ik for k = 1,..., M, and T denotes transpose.

The complex weights on the antenna elements are also combined in an (N x 1)

weight vector

w(t) = ... (2.0)

The received signals X(t) are weighted and summed to form the array output signal

as shown in Figure 2.1;

B
I

I

_(t) = w'(t)x(t) (2.10) m

where H denotes complex conjugate (Hermitian) transpose. By inserting equation

(2.3) into (2.10), the output signal can be separated into the desired, interference,

and noise components:

= w"(t) x,,(t) + F_,x,_(t) + x,(t)
k=l

M

k=l

(2.11) =:

I

2.2 The Steady State Weight Vector

In order to compute array performance measures, one must know the weight

vector. In this study we consider the steady-state performance, so we need to

know the steady state weight vector. The two steady state weight vectors we will

consider is the Wiener (maximum SINR) weight vector, and the modified-Wiener

weight vector.

The Wiener weight vector is given by [9]

6
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W.= #,_-IS (2.12)

: ±

where # is a constant, S is a steering vector given by S ---- ADUD, and ¢I, is the

covariance matrix given by

= E[XX"]

- E[X, XXI +E[X.XgI

)= (ADUD)(ADUD)" + A1kUik)(Alkeik)" + a2I

= '_D+ O_k +_,7

(2.13)

(2.14)

(2.15)

= _D -iv _I "_ _,' (2.16)

It is well-known [7,8,9] that this weight vector maximizes the output SINR of the

system, where

PD
SINR - (2.17)

Pt+P,7

If one is interested in suppressing weak interferences, the Wiener weight vector

may not provide su_ciently low INR at the output. In this case, one desires to

suppress these interference signals even though they may be weak compared to the

noise power. For such applications, a modification of the Wiener weight vector has

been proposed [1]. The modified Wiener weight vector is given by

W = #(,_ - Fa2I)-lS (2.18)

where F is a fraction satisfying 0 _ F < 1. This weight vector maximizes a modified

SINR given by [4]:

PD
MSINR = P1 + (1 - F)P,_ (2.19)

7



It can be seenfrom equation (2.19) that the modified SINR is equal to the SINR

when F = 0; thus, when F = 0 the modified Wiener weight vector reduces to the

standard Wiener weight vector. As F approaches 1, the modified Wiener weights

place less and less emphasis on the noise power in the maximization. As a result,

more emphasis is placed on minimizing interference power, so weak interference

signals are more effectively suppressed.

Because the modified Wiener weight vector is a generalization of the standard

Wiener weight vector, we will in the sequel consider only the modified Wiener

weight vector. The array performance for the standard Wiener weight vector may

be obtained from the results derived below by setting F = 0 there.
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2.3 Array Performance Measures m

Prom (2.11), the desired, interference, and noise power in the output can be

computed. Noting that the desired, interference, and noise components of the signal

are mutually uncorrelated, we have

!11

z

J

P _ E{ls(t)l 2} - wH@W (2.20)

where ¢ is given in equation (2.13). By inserting (2.16) into (2.20), the total power

can be partitioned into the sum of the desired, interference, and noise powers:

P = PD+P_+P,7 (2.21)

Po = wH_D W = wH(ADUD)(ADUD) HW (2.22)

P1 = wg¢l W= wH AikU1k)(AikUik) g W (2.23)
kk=l l

p, = wH_nw -. cr2wHw (2.24)
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From these powers, array performance measures such as the output interference to

noise ratio (INR) and the signM to interference plus noise ratio (SINR) can readily

be found.

It is worth noting that to compute the output powers, one needs the signal

amplitude and noise power only in the directions of arrival of the desired and in-

terference signals. Equivalently, we may express the output powers in terms of the

noise power (a 2) and the SNR and INRs of each signal in each antenna element.

In computing power ratios, the a 2 terms cancel; thus, power ratios are functions

of the SNR and INRs at the elements. We will use this latter formulation in the

presentation of the performance results.

3. Analysis of an Array with Additional Interfering Signals

i.

w

From the equations in the previous chapter, we are able to compute the steady-

state performance of an adaptive array for any signal environment. In particular, we

can compute the performance when the number of interference signals M is greater

than or equal to the number of array elements N. In this section, we present an

analysis of a simple example of this type of scenario.

Consider a 2-element array with the first element as a directional main antenna

and the second element as an auxiliary antenna. We assume that there are M -'- 2

interference signals. Without loss of generality, assume the noise power a 2 = 1, and

for simplicity of notation define:

aD = amplitude of desired signal in the main (= aD1 in equation (2.7))

w



= amplitude of interference #1 in the main and auxiliary
all (= alll and = an_ in equation (2.7))

an = amplitude of interference #2 in the auxiliary (= an2 in equation (2.7))

We assume that the desired signal amplitude in the auxiliary is negligibly small

(i.e., adz = 0 in equation (2.7)), and that the signal amplitude of interference #2

in the main is negligibly small (i.e., a121 = 0). With these definitions, we have

m= =
R

m

I

B

i

_D

_I1 _-- a211

0 0

(3.1)

(3.2)

m
J

=

u

(I)i2 --

0 0

0 a22

(3.3)

1 0

<_n = (3.4)
0 1

Prom equations (2.14) and (2.18), the modified Wiener weight vector is given by:

W = #(_- FI)-I(ADUD)

#

aD

0

[a b + a_l + (1 - F)] [a}l + a_2 + (1 - F)] - a},

u
U

D

g

w

m

I

I
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= #, a_x -F (3.5)
e-JCn 0

where #a is a constant. Note that the additional interference signal appears as the

a_2 term in the weight; one can see that if an >> az_ + (1 - F), then the effect of

the additional interference is small.

Prom equations (2.22)-(2.24) and (3.5) the output powers can be found:

m = [a l+ + (1- r)] 2 (3.6)

(3.7)

Vrl : [aft1 -[- a22 -Jl- (1 -- F)] 2 Ji- a41 (3.8)

'Note that at2 = 0 corresponds to the case of only one interference signal; in this

case the array is not over-constrained, and Pz = (1 - F) 2. The output interference

power can be made as small as possible by choosing F close to 1. If F = 1, perfect

interference suppression can be achieved, regardless of how weak this interference

signal is.

When the additional interference signal is present (i.e., at_ _ 0), the output

INR is given by

2 2

INn -- P1 = a_, {[a_2 q- (1 - F)] 2 -F ana,2} (3.9)

P, [a_, -F a_2 q- (1 - F)] 2 -I- a_x

It can be shown that the INR is maximized for F = 1. In practice for weak

interference signal suppression, F is chosen near 1, so in the sequel we will set

F = 1. In this case, the INR is given by

2 2 [a}l + a}2] (3.10)INR = anaz2
[a_, -F a_2] 2 q- a_l"

11

o



I£we further assume that the auxiliary antenna is isotropic so that all -_ a12, the

output INR becomes

2 (3.11)
IN R = -_a l,.

This value of INR may be excessively high for practical values of an. For example,

a typical value of the an corresponds to an INR at the auxiliary of -3 dB [1], which

gives from (3.11) an output INR of -7 dB; this is an unacceptably high output INR

for some satellite communication applications [1].

Let us consider ways of reducing the performance degradation caused by ad-

ditional interference signals. One modification is to attempt to remove the effect

of interference I2 on the covariance matrix. From equation (3.3) it can be seen

that at2 appears in the lower right element of ¢; thus, if one has an estimate of

a12 obtained from a priori knowledge of some sort, one could subtract a fraction

of ai2 from • before forming the weight vector; that is, the weight vector could be

determined by

w =. s (3.12 

where G is a fraction satisfying 0 _< G < 1. Note that this modification is similar

in spirit to the modification of the standard Wiener weight as presented in (2.18).

There is an important difference, however; in the modified Wiener weight method,

the noise power a 2 could be estimated from the minimum eigenvalue of the covari-

ance matrix @ under certain conditions [1,4], but no similar method seems to be

available for obtaining an estimate of @I2. Also, it should be pointed out that for

N > 2 array elements, the arrival angle of interference I2 must be estimated along

with the amplitude. As an example, if N = 3, then _I2 is of the form

12
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(I)12 _--- a22

0 0 0

0 1 e-Jet2

0 e j_n 1

(3.13)

so both al2 and ¢I2 must be known (or estimated). This information is almost never

known a priori; if it was known, there would be no need for an adaptive array in

the first place. Thus, there seems to be little hope of eliminating the effects of

additional interference signals by altering the estimate of the covariance matrix, or

by altering the weight determination method.

4. Array Performance Comparisons

k

Since no practical modification of the weight determination algorithm appears

to improve array performance when there are additional interference signals, these

interference effects must be reduced by other means. From equation (3.9), it can be

seen that the effects of additional interference can be reduced by reducing the signal

amplitudes of these interference signals; this can be achieved by using directional

auxiliary antennas. This section analyzes the performance of the array as a function

of auxiliary antenna directivity for a scenario of practical interest as described in

[1].

In this example we consider a 3-element array (N = 3) with a desired signal

incident at broadside (OD = 0°), and two interference signals incident at -{-20 ° and

-30 °. The SNR in the main antenna is 14.6 dB, the INR in the main is -5 dB, the

13

w



SNR in each auxiliary element is -10 dB, and the INR in each auxiliary element is

-3 dB.

The array performance for the case where the number of interference signals

is less than the number of array elements has been studied in [1,4]. The basic

conclusion of these studies is that when the number of interference signals is less

than the number of elements, then for an appropriate value of F, good interference

suppression can be obtained without significantly affecting the output SINR. An

example of this case is shown in Figure 4.1, in which the output SINR and INR

is shown as a function of the fraction F. It can be seen that for F near 1, the

output INR can be made very small, while the output SINR stays very close to

its maximum value of 14.6 dB (the maximum SINR is attained for F = 0). This

example is in agreement with the conclusions of the previous section.

When the number of interference signals equals or exceeds the number of ele-

ments (i. e., if M _> N), it is not always true that good performance may be obtained.

The reason is that an N element array has N degrees of freedom; that is, it can

satisfy up to N array gain constraints. For M = N - 1 interference signals, the N

constraints are used to point a beam at the desired signal, and to place N - 1 nulls

in the directions of the interference signals. If more interference signals are present,

the array does not have any degrees of freedom left place nulls in these additional

interference signal directions. As a result, more interference power appears in the

output, so the output SINR drops.

Figure 4.2 illustrates the above situation. Here, the desired signal is as in Fig-

ure 4.I, and there are four interference signals at +20 °, -30 °, +50 °, and -60 °. The

SNR in the antenna is 14.6 dB, the INR in the main is -5 dB, the SNR in each
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Output SINR and INR for a 3-element array with two interference
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auxiliary element is -10 dB, and the INR in each auxiliary element is -3 dB. This

figure shows SINR and INR for arrays with N = 3, 4, 5, and 6 elements. It is clear

that the performance is "good" for N =5 and 6, but drops significantly for N = 3

and 4.

When the number of interference signals exceeds the number of array elements,

improved performance can be achieved by using directive auxiliary antenna ele-

ments. Figures 4.3 and 4.4 quantify this statement. In Figure 4.3 the array has

three elements, and there are three interference signals (in addition to the desired

signal); the desired signal is incident at broadside as before, and the three interfer-

ence signals are incident at +20 °, -30 °, and +50 °. We denote the first two interfer-

ence as primary interference signals, and the third as a secondary interference. (For

the satellite communication application, one can consider the two primary inter-

ference signals as originating from the two satellites adjacent in the geostationary

orbit to the desired signal satellite. The additional interference signals originate

from satellites in the geostationary orbit, but farther away from the desired signal

satellite.) The SNR and INR values for the main and primary interference signals

are as in Figure 4.2. The INR of the secondary interference in the main is -100 dB

(to model the fact that the highly directive main antenna has very low sidelobes in

the region of the secondary interference signals), and the INR of this signal in the

auxiliaries varies for the different curves. This variation of secondary INR in the

auxiliaries corresponds to differing amounts of directivity of the auxiliary antenna

patterns. It can be seen that for highly directive atlxiliaries, the performance of the

array is essentially equivalent to the 2-interference case; that is, the performance

is good, and corresponds to the performance of an array with sufficient degrees of

16
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freedom to place nulls in the primary interference directions. As the auxiliaries

becomelessdirective, the performance degrades. When the secondary INR is at

-10 dB, the auxiliary antennasare isotropic, and the output INR performance is

comparable to that in Figure 4.2.

Figure 4.4 is a similar case to Figure 4.3, but using four interference signals,

two primary interference signalsas before, and two secondaryinterference signals

incident at +50° and -60 o. By comparing thesetwo figures, it can be seenthat the

number of secondaryinterferencesignalshas lesseffect than the INR level of these

signals.

From both Figures 4.3and 4.4, oneseesthat a secondaryINR of about 10dB be-

low the primary INR is an approximate threshold for goodoutput INR performance;

if the secondary INR is below this value, good array performance is obtained, and

if the secondary INR is abovethis value, the array is over-constrainedand cannot

effectively suppressall of the interferencepower.

Finally, Figure 4.5 showsthe array performanceasa function of the directivity

of the auxiliary elements. This figure considersthe samescenarioas above. In this

casewe have set F = 0.9 and varied the directivity of the auxiliary elements. A

desired signal and two primary interference signals are present as in the previous

example, and 1-4 secondary auxiliary signals are incident at +50 °, -60 °, +70 °,

and -75 °. The INR in the auxiliaries of the secondary interference signals is set to

-20 dB. Each auxiliary antenna is considered to be pointing in the general direction

of one of the primary inte_erence signals, so in each auxiliary the INR of one

primary interference signal is higher than the INR of the other interference signals

by the amount shown on the x-axis of Figure 4.5); the INR of the other interference

18
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signals, as additional interference INR varies.
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signals is fixed at -20 dB. Thus, the 0 dB directivity point on Figure 4.5 represents

isotropic auxiliaries, and the directivity of the auxiliaries increase as one moves to

the right on the figure. It can be seen that when the auxiliary gain is 20 dB higher

in the primary interference direction, the output INR decreases by about 10 dB

in all three cases. Thus, antenna directivity is effective at reducing the effects of

additional interference signals, even when the interference is weak.
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5. Conclusions

We have considered the effect of additional interference signals on the effect of

an adaptive array. In particular, we consider an array whose goal is to suppress

weak interference signals; this problem is motivated by an application in receiving

television signals from geostationary satellites. We studied the steady-state perfor-

mance of such an' adaptive array system when the number of interference signals

exceeds the number of array elements, and thus exceeds the number of degrees of

freedom available to the array.

It was shown that even when there are more interference signals than array

elements, satisfactory suppression of weak interference signals can result if the aux-

iliary elements are directive. It was shown that if the auxiliaries have about 20 dB

gain in the direction of the primary interference signals (the interference signals

which have the strongest input power in the main antenna), that the output INR

can be reduced by about 10 dB from the isotropic auxiliary level. Thus, in the case

of additional interference signals, effective interference suppression results by using

directive auxiliaries, even when the goal is suppression of weak interference to well

below the noise level.
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